Artificial boundary conditions for the semi-discretized one-dimensional nonlocal Schrödinger equation
نویسندگان
چکیده
A general method is proposed to build exact artificial boundary conditions for the one-dimensional nonlocal Schrödinger equation. To this end, we first consider spatial semi-discretization of equation, and then develop an accurate numerical computing Green's function semi-discrete These functions are next used corresponding model. Numerical results illustrate accuracy conditions. The methodology can also be applied other models could extended higher dimensions.
منابع مشابه
Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملAbsorbing Boundary Conditions for the Schrödinger Equation
A large number of differential equation problems which admit traveling waves are usually defined on very large or infinite domains. To numerically solve these problems on smaller subdomains of the original domain, artificial boundary conditions must be defined for these subdomains. One type of artificial boundary condition which can minimize the size of such subdomains is the absorbing boundary...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملnumerical solution for one-dimensional independent of time schrödinger equation
in this paper, one of the numerical solution method of one- particle, one dimensional timeindependentschrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function v(x).for each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. the paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110575